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Even non oriented steel sheets present anisotropic behavior. Our investigation consists of developing two models based on rotational
measurements to consider these magnetic properties. The direct method models both components of the magnetic field with the
ones of the magnetic flux density. The indirect method determines the energy density as a function of the magnetic flux density.
The magnetic field is then calculated by differentiating the energy density with respect to the magnetic flux density. Both models
are finally validated by comparing measured and computed values of the magnetic field.
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I. INTRODUCTION

THE mangetization properties of soft magnetic materials
differ with the excitation field direction. Although

this anisotropy can be deliberately performed with Grain
Oriented steel sheets, the magnetization curves in rolling (RD)
and transverse (TD) directions differ significantly for Non
Oriented (NO) steel sheets [1], [2]. Hence reliable models of
this phenomenon are required in numerical analyzes such as
finite element methods.

Three main intrinsic phenomena entail anisotropic
characterization of body centered cubic iron [3]: the
shape anisotropy depends on the shape of ferromagnetic
crystal and its demagnetization field, the magnetocrystalline
anisotropy alters the magnetization properties relying on
the spin-orbit interactions of the crystal atomic structure,
and the magnetostriction enhances an easy direction of the
magnetization by deforming the domains.

Since the magnetic anisotropy infers a dependance of
reluctivity on both amplitude and direction of the applied
flux density, its models can be developed by interpolating
the reluctivity between two adjacent B−H curves extracted
from measurements. The magnetic field can be decomposed
into a purely isotropic component and an effective anisotropic
one. This model can be implemented into a Garlekin’s
formulation [4].

Based on energy/coenergy density principle [5], Péra et al.
[6] expand a phenomenological model on GO sheets which
needs only magnetization curves in RD and TD directions.
Although, their computational implementation requires some
differentiations based on interpolation, their model fits well
with alternating flux measurements for various directions
in the range of 200 A/m to 30 kA/m. However, the four
magnetization modes described in [7] are not fully described
by this phenomenological approach, so measurements in more
directions are needed to characterize steel sheets completely.

In this paper, we focus on models of magnetic properties
dedicated for 2D finite element methods with the magnetic
vector potential A. Its functional calculus is given by [8]:
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where B and H are the magnetic flux density and magnetic
field strength respectively, S is the current density source and
Ω is the considered volume. Coupled with a Newton Raphson
method, the estimated magnetic vector potential is updated
after each iteration k by solving the following equation :

Jk [Ak+1 −Ak] = Rk (2)

where the residual vector R and Jacobian matrix J are given
by:
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with N the shape function of the finite element method and
ez the unit vector in the z direction.
The convergence of the Newton Raphson method lays on
the matrix ∂H/∂B which should be positive definite. So the
model of magnetic property should respect this property and it
should represent with enough accuracy the measured magnetic
magnitudes. Hence, we propose to model magnetic anisotropy
of NO sheets with two methods:

• Direct method: the components of H are modeled as a
function of the components of the magnetic flux density;

• Indirect approach: from integration of H(B) for every
direction of B, the energy density F is represented with
the components of B. The magnetic field is deduced
by differentiating the energy density with respect to the
components of B.



II. MODELS OF MAGNETIC ANISOTROPY

Measurements have been performed in a single NO steel
sheet under rotational flux density at 10 Hz. Every component
of B−H loci are measured with 1 000 points with 18
different amplitudes of magnetic flux density from 0.1 T to
1.75 T. In order to extract the anhysteretic curves for every
direction, the anisotropic effect is analyzed after removing the
losses for each locus. The losses can be removed by canceling
the phase shift between both fundamental components of
magnetic flux density and magnetic field.

A. Direct model of the components of H

In order to ensure that the matrix ∂H/∂B is positive
definite, the amplitude H of the magnetic field should be
strictly monotonous with the amplitude B of the flux density.
Thus the amplitude H is fitted with the following analytical
function:

H(B, φB) = C(φB) [exp (τ(φB)B)− 1]+D(φB)
4
√
B (4)

where the parameters C, τ and D are fitted by a cubic spline
interpolation for every direction φB of the magnetic flux
density.

The direction φH of the magnetic field, which is also
dependent of both components of B, is fitted with a bi-cubic
surface spline interpolation.

B. Indirect model based on the magnetic energy density F

For every direction of the flux density, the magnetic energy
density F is calculated by integrating the anhysteretic curve
H(B). This integration is performed by first interpolating the
anhysteretic curves with a cubic spline interpolation and then
integrating these splines. After calculating the energy density
at its corresponding measurements of B, the magnetic energy
density is fitted with the following analytical function:

F (B, φB) = α(φB) [exp (β(φB)B)− 1] + γ(φB)B (5)

where the parameters α, β and γ are fitted by a cubic spline
interpolation for every direction φB of the magnetic flux
density.

The components of the magnetic field strength H and
φH are determined by differentiating the energy density with
respect to the components of the magnetic flux density B and
φB respectively. In x− y coordinate system, the components
of H are determined by:
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III. RESULTS AND DISCUSSION

In order to validate the proposed models, the H loci
are estimated by both models and compared with the
measurements. Due to its small impact, ∂F/∂φB has been
neglected in the indirect model. Figure 1 shows that the
proposed models can reproduce the measured locus for
different amplitudes of the magnetic flux density. The direct
method provides the best accuracy especially with high
amplitude of the magnetic flux density. However, the indirect
method presents some smoother H loci. So the indirect
method could be employed to ease the convergence of the
direct method for its implementation in finite element method.

In the final paper, both models will be improved. Moreover,
their implementation in 2D finite element method will be
discussed.
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Fig. 1. Measurements and models of H loci
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